skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Shlomi Dolev, Ehud Gudes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shlomi Dolev, Ehud Gudes (Ed.)
    Data-dependent accesses to memory are necessary for many real-world applications, but their cost remains prohibitive in secure computation. Prior work either focused on minimizing the need for data-dependent access in these applications, or reduced its cost by improving oblivious RAM for secure computation (SC-ORAM). Despite extensive efforts to improve SC-ORAM, the most concretely efficient solutions still require ≈ 0.7 s per access to arrays of 230 entries. This plainly precludes using MPC in a number of settings. In this work, we take a pragmatic approach, exploring how concretely cheap MPC RAM access could be made if we are willing to allow one of the participants to learn the access pattern. We design a highly efficient Shared-Output Client-Server ORAM (SOCS-ORAM ) that has constant overhead, uses one round-trip of interaction per access, and whose access cost is independent of array size. SOCS-ORAM is useful in settings with hard performance constraints, where one party in the computation is more trust-worthy and is allowed to learn the RAM access pattern. Our SOCS-ORAM is assisted by a third helper party that helps initialize the protocol and is designed for the honest-majority semi-honest corruption model. We implement our construction in C++ and report its performance. For an array of length 230 with 4B entries, we communicate 13B per access and take essentially no overhead beyond network latency. 
    more » « less